多多读书

手机浏览器扫描二维码访问

第52章 我陆时羡宝刀未老(第2页)

求证:存在4个函数fi(x)(i=1,2,3,4)满足:

(1)对i=1,2,3,4,fi(x)是偶函数,且对任意的实数x,有fi(x+π)=fi(x);

(2)对任意的实数x,有f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x。

题目看起来非常简洁,可是陆时羡知道最后的解答过程是题目的数倍,可能还不止。

时间不多,陆时羡决定先解决第一题。

陆时羡用屁股想都明白,凡是跟圆周率π挨上边的基本上就跟周期函数挂钩了。

他直接策反了敌方f(x)两员大将的g(x)与h(x),且g(x)是偶函数,h(x)是奇函数,对任意的x∈r,g(x+2π)=g(x),h(x+2π)=h(x)。

然后分别代入四条函数fi(x),i=1,2,3,4。得到四条函数f1(x)、f2(x)、f2(x)、f4(x)的表达式。

故fi(x),i=1,2,3,4是偶函数,且对任意的x∈r,fi(x+π)=fi(x)。

这个倒是简单,极有限次数的验证只需要分别代入验证就行了,不费脑子。

陆时羡觉得只要次数在10以下,他都能接受,无非就是费点笔芯而已。

毕竟总比看半天题目无从下手的强。

不过此题好像还是给了参赛者一些余地,因为陆时羡发现第二问与第一问的关联很大。

将刚刚第一问得到的代数式代入f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x

接下来,分情况讨论就完事了。

因为f1(x)、f2(x)、f2(x)、f4(x)因为x的取值范围,从而存在6种情况。

其中有两种已经无需讨论,已经是从实招来。

还有四种情况依然负隅抵抗,陆时羡只好使出假设杀威棒。

最后它们终于被屈打成招,也因此证明了所有六种情况完全成立。

综上所述,此式成立得证!

陆时羡长吐一口气,再用余光看向周围时,诺大的教室居然只剩下他一个人。

他忽然心里一慌,时间还没结束啊,不会吧?

自己花这么大力气证明的题目,别人这么快就做完了?

是我老了提不动屠龙刀了,还是现在的小朋友太厉害?

他一抬头,就看着监考员直盯盯地望着他。

什么意思?是我让你失望了吗?

对不起我道歉,我承认我真的是个数学渣渣。

他颇为忧郁地起身交卷,然后收拾行李,准备离开这个伤心地。

可没想到当他离开的时候,背后传来监考员的赞叹声。

“哎呦,不错哦!这个考场的人早就放弃提前走了,只有你还在默默坚持。”

陆时羡:????

“不管对错,你能做完,也不愧我盯你一个人盯了一个小时了。”

陆时羡:ε?(?>灬<)?з

陆时羡本来低潮的心情又渐渐回升起来。

这意思好像是我还算可以,宝刀未老啊!

热门小说推荐
魔师逆天

魔师逆天

前世孤苦一生,今世重生成兽,为何上天总是这样的捉弄!为何上天总是那样的不公!他不服,不服那命运的不公。自创妖修之法,将魔狮一族发展成为能够抗衡巨龙的麒麟一族,成就一代麒麟圣祖的威名。...

鹿鼎风流记

鹿鼎风流记

少年附身韦小宝,和康熙做兄弟,唬弄皇帝有一手绝色美女尽收,色遍天下无敌手!睿智独立,诱惑惊艳的蓝色妖姬苏荃花中带刺刺中有花的火红玫瑰方怡温柔清新纯洁可人的水仙花沐剑屏空谷幽香,善解人意的解语花双儿倾国倾城,美丽绝伦的花中之王牡丹阿珂诱惑惊艳美艳毒辣的罂粟花建宁空灵纯洁娇艳精怪的山涧兰花曾柔...

神墓

神墓

神魔陵园位于天元大6中部地带,整片陵园除了安葬着人类历代的最强者异类中的顶级修炼者外,其余每一座坟墓都埋葬着一位远古的神或魔,这是一片属于神魔的安息之地。一个平凡的青年死去万载岁月之后,从远古神墓中复活而出,望着那如林的神魔墓碑,他心中充满了震撼。沧海桑田,万载岁月悠悠而过,整个世界彻底改变了,原本有一海峡之隔的...

倚天屠龙夺艳记

倚天屠龙夺艳记

赵敏的娇蛮狐媚周芷若的举止优雅小昭的温柔体贴不悔的秀丽美艳蛛儿的任性刁蛮  一梦醒来,该是倚天屠龙的另一个新主角上场了...

修真位面商铺

修真位面商铺

成仙难,难于上青冥!修真难,没有法宝没有丹药没有威力巨大的符箓,没有强悍的天赋。但是自从有了位面商铺就不一样了,有了位面商铺一切都有了。什么,修真界最普通的洗髓丹在你那里是绝世神丹!什么,你们那个位面遍地都是各种精金矿物,精铁灰常便宜!前世走私军火的商人,今生在修真界同样要将商人当做自己终生的追求。我只是一个做生意的,修炼真仙大道只是我一个副业。成为位面商铺之主,横扫诸天万界。商铺在手,天下我有!...

我的极品老婆们(都市特种兵)

我的极品老婆们(都市特种兵)

一个被部队开除军籍的特种兵回到了都市,看他如何在充满诱惑的都市里翻云覆雨...