多多读书

手机浏览器扫描二维码访问

第367章 神性从未消失(第2页)

他解释道:“这类似于图论中的库拉托夫斯基定理,但推广到拟阵的矩阵实现。

证明这个猜测,将统一拟阵的表示理论,提供有限障碍物来决定一个拟阵是否能嵌入有限域的向量空间。”

等罗塔说到这里,林燃可以确认,这就是罗塔猜想。

罗塔猜想一直到他来的那个时间点,也就是2025年,都没有被彻底解决。

等到罗塔的报告结束的提问环境,台下举着的手不多,第一排更是只有林燃举手。

勒雷马上道:“教授,你请说。”

林燃起身问道:“罗塔教授,您的猜测引人入胜。

我注意到,对于特征2的有限域,我们或许能部分验证。

假设我们考虑二元拟,它们对应于GF(2)上的表示。

已知禁子包括Fano平面,也就是PG(2,2)的对偶和某些非Fano配置。

但如果我们限制到秩r≤4的拟阵,我相信能证明有限禁子存在。

我可以上台演示吗?”

罗塔眼睛亮起:“当然,请上来,教授。”

这相当于你一个小透明,大牛突然对你的报告感兴趣。

你自然喜上眉梢。

罗塔不是小透明,可林燃也不是一般大牛啊。

林燃走上台,借用黑板,开始他的讲解。

他先擦掉部分笔记,画出一个秩3的二元拟阵矩阵表示:一个3xn的GF(2)矩阵,列向量线性独立。

“让我们从基本开始。拟阵M的基是其独立集的最大子集。对于GF(2)-可表示的M,其表示矩阵的列满足:任意子集的线性相关性对应于拟阵的循环。”

现场所有人都意识到,林燃要开始表演了。

林燃接着写道:“假设M避免了已知禁子:7点拟阵、其对偶,以及5点3秩均匀拟阵。

对于r≤3,我们用Whitney的破阵理论分类:所有这样的M必须是图拟阵或其补,或二元仿射几何AG(3,2)的子类。

现在,推广到r=4:考虑Tutte多项式T(M;x,y),这是一个双变量多项式,编码了M的独立集和循环。

T(M;1,1)给出基的数量”

林燃结束时,擦掉粉笔灰:“这为GF(2)上的低秩情况提供了部分证明。

如果推广到更高阶域,或许需Schauder-Leray拓扑工具。

罗塔教授,你的猜想很有意思。

仓促之下,我也只能给一个特定情况下的完整证明。”

罗塔已经沉浸在林燃的解答里无法自拔,台下的反应更是如潮水般汹涌。

从前到后,格罗滕迪克带头起身鼓掌。

“这是哥廷根神迹再现吗?”

“罗塔整个人都呆住了。”

“我就想问问,教授结婚了没?我想把我女儿嫁给他!或者不嫁给他,只是和他一起培育一个下一代也行啊!”

台下议论声四起。

这是短期无法理解林燃解法的数学家们,不做这一行肯定没那么快懂。

热门小说推荐
神墓

神墓

神魔陵园位于天元大6中部地带,整片陵园除了安葬着人类历代的最强者异类中的顶级修炼者外,其余每一座坟墓都埋葬着一位远古的神或魔,这是一片属于神魔的安息之地。一个平凡的青年死去万载岁月之后,从远古神墓中复活而出,望着那如林的神魔墓碑,他心中充满了震撼。沧海桑田,万载岁月悠悠而过,整个世界彻底改变了,原本有一海峡之隔的...

神印王座

神印王座

魔族强势,在人类即将被灭绝之时,六大圣殿崛起,带领着人类守住最后的领土。一名少年,为救母加入骑士圣殿,奇迹诡计,不断在他身上上演。在这人类六大圣殿与魔族七十二柱魔神相互倾轧的世界,他能否登上象征着骑士最高荣耀的神印王座?...

倚天屠龙夺艳记

倚天屠龙夺艳记

赵敏的娇蛮狐媚周芷若的举止优雅小昭的温柔体贴不悔的秀丽美艳蛛儿的任性刁蛮  一梦醒来,该是倚天屠龙的另一个新主角上场了...

超凡世界

超凡世界

地球少年江云卷入了一个神秘的超凡世界之中,获得了超凡之力,并且开始在地球以及一个个超凡世界,开启了自己追逐巅峰的超凡旅程。VIP。全订阅可入,要验证。普通。(ps已经完本神卡...

风流英雄猎艳记

风流英雄猎艳记

生长于孤儿院的少年刘翰和几女探险时偶得怪果奇蛇致使身体发生异变与众女合体并习得绝世武功和高超的医术为救人与本地黑帮发生冲突得贵人相助将其剿灭因而得罪日本黑道。参加中学生风采大赛获得保送大学机会。上大学时接受军方秘训后又有日本黑龙会追杀其消灭全部杀手后又参加了央视的星光大道和青歌大赛并取得非凡成绩。即赴台探亲帮助马当选总统世界巡演时与东突遭遇和达赖辩论发现超市支持藏独向世界揭露日本称霸全球的野心为此获得诺贝尔和平奖而在颁奖仪式上其却拒绝领奖主人公奇遇不断出现艳遇连绵不...

一揽众美在三国

一揽众美在三国

一个现代人,来到了古代,哇噻,美女如云呀,一个一个都要到手,战争阴谋铁血一揽众美,逍遥自来快乐似神仙本书集铁血与情感于一身为三国类中佳品。...